

Dark Photon Searches at ALICE

Taku Gunji
On behalf of the ALICE
Collaboration
CNS, Univ. of Tokyo

Outline

- ALICE Experiment
- ALICE Detectors
- Di-electron measurement in ALICE
- Dark Photon Searches in Run1
- ALICE Upgrade in LS2
- Perspectives in Run3
- Summary and Outlook

ALICE Experiment

- Dedicated to Heavy-Ion Collisions at the LHC
 - Characterization of the "Quark-Gluon-Plasma"
 - De-confined state composed of quarks and gluons
 - Realized at high temperature (T~170MeV)
 - Early Universe
 (10μs after Big Bang)

ALICE Detectors

- Multi-purpose detectors to measure many observables (PID-hadrons, leptons, photons, jets)
 - Central Barrel: ITS-TPC-TRD-TOF-Calorimeters

Inner Tracking System

- 6 cylindrical layers of silicon detectors
 - 2 layers each of Silicon Pixel Detector (SPD),
 Silicon Drift Detector (SDD) and double sided
 Silicon microStrip Detector (SSD)

Time Projection Chamber

The main tracking device with PID capabilities (dE/dx)

Volume: ~90m³ (largest TPC in the world!)

Gas: Ne/CO₂/N₂ (90/10/5)

Ar/CO₂ (90/10) for Run2

Drift field: 0.4kV/cm, 94µsec drift time

Gating grid operation (100μsec + 180μsec)

→ Maximum rate = 3.5kHz

72 MWPCs with 557768 readout pads

Data sample (events)

pp, $\sqrt{s}=7~{\rm TeV}$

▶ 3.5×10^8 (min. bias)

p–Pb,
$$\sqrt{s_{
m NN}}=5.02$$
 TeV

► 1.1×10^8 (min. bias)

Pb-Pb,
$$\sqrt{s_{\mathrm{NN}}} = 2.76~\mathrm{TeV}$$

- ► $16 \times 10^6 \ (0 10\%)$
- ► $11 \times 10^6 \ (20 50\%)$

Di-electron analysis

- Electron identification by TPC/TOF/TRD
 - Hadron Contamination ~1(pp)-7(Pb-Pb)%
 - S/B at $M_{ee}(0.5 \text{GeV}) \sim 0.1 \text{(Pb-Pb)-1(pp)}\%$
- Mass resolution ~ 1%
- p-p and p-Pb consistent with cocktail. Pb-Pb analysis is

ALI-PREL-69715

Dark Photon Searches in ALICE

- Dark Photon Searches in low mass Dalitz pairs
- Similar analysis strategy as done in PHENIX
 - Combined p-p (276M) and p-Pb (85M) data
 - Fitting with Kroll-Wada + ChebyChev function

90% CL of Mixing Parameter

- CLs method to extract 90% CL, 1σ and 2σ band
 - Similar or slightly worse CL₉₀ compared to PHENIX
 - No dark photon signal is observed
- x4 improvement with Run2 statistics (→ ε²<10-6)
 and ε² for M_U>100 MeV

ALICE Upgrade in LS2

Operate ALICE at high luminosity in Run3 (>2019).

```
    Target recorded luminosity:

            Pb-Pb: ≥ 10 nb<sup>-1</sup> ⇒ 8 × 10<sup>10</sup> events
            pp (@5.5 TeV): ≥ 6 pb<sup>-1</sup> ⇒ 1.4 × 10<sup>11</sup> events
```

Exploit full potential of the ALICE in 50kHz HI collisions

Major detector upgrades

- Si-based Tracking System at central and forward rapidities
- GEM TPC upgrade with continuous readout
- Fast readout electronics
- online-offline upgrades

New Inner Tracking System

- 7-layer barrel geometry of MAPS
 - Inner barrel (3 layers) and outer barrel (4 layers)
 - Many R&D (ALPIDE and MISTRAL/ASTRAL)

First layer close to IP (39mm \rightarrow 22mm)
Reduced material budget (X/X₀ = 1.14% \rightarrow 0.3% for first layer)
Smaller pixel size (50x425um² \rightarrow O(20x20um²))
Increase data rate (1kHz \rightarrow 50kHz in Pb-Pb and 200kHz in p-p)

Detector Performances

 Expected improvement on pointing resolution (left) and tracking efficiency (right)

GEM TPC Upgrade

 Need high rate capability and small ion backflow to prevent space-charge distortions. Preserve current performances.

Continuous readout with micro-pattern gaseous detectors

using the advantages on:

Reduction of ion backflow

- High rate capability
- Less ExB effect

Low Mass di-electrons in Run3

- High statistics + Dalitz, conversion and charm rejection in new ITS. Reduced uncertainties from charm decay
- Significantly Improved measurement for M_{ee}>0.2 GeV

ALICE, CERN-LHCC-2013-020

- Sum
- Rapp in-medium SF
- Rapp QGP
- cocktail w/o ρ (± 10%)

ALICE, CERN-LHCC-2013-020

Sum
- Rapp in-medium SF
- Rapp QGP
- ly I < 0.84

- Cocktail w/o ρ (± 10%)

Expected Reach of 90% CL

- 1G Pairs in M_{ee}<0.1 GeV from 5.5 TeV p-p, p-Pb and Pb-Pb at Run3 and Run4 (cf. 0.6M in Run1)
 - p-p running at 14 TeV under consideration
- $\varepsilon^2 < 10^{-7}$ will be reachable.
- Feasibility of long-lived DP searches with new ITS will be evaluated.

Dark γ'/Z boson?

- GeV-scale dark γ ' and Z' in IMR
- Thermal di-electrons from QGP

Dark γ'/Z boson?

- GeV-scale dark γ' and Z' in IMR
- Thermal di-electrons from QGP
- Can be studied in the ALICE in Run3/Run4

Summary and Outlook

- Dark Photon searches in ALICE:
 - Good electron identification and good mass resolution
 - Current Run1 data shows no hint of dark photon signals. ε^2 is larger than ε^2 by PHENIX.
- Future prospects:
 - Run2 will improve x4 in ε^2 .
 - ALICE major upgrade for high luminosity in Run3 and Run4 will allow to reach ε^2 <10⁻⁷ and to search for GeV-scale dark gauge bosons in IMR.

Spare slides